On the average nodal volume for different invariant random polynomials

V. Gichev

Sobolev Institute of Mathematics (Omsk Branch) Omsk, Russia

Approximation of logical models, algorithms, and problems Omsk, April 27–30, 2015

ション ふゆ アメリア メリア しょうくの

- Brief history (polynomials and Laplace–Beltrami eigenfunctions).
- Isotropy irreducible homogeneous spaces (expectations).
- The case of spheres (comparison of the Kostlan–Shub–Smale and $L^2(S^m)$ models).

ション ふゆ アメリア メリア しょうくの

• Isotropy irreducible homogeneous spaces (variances).

Brief history (polynomials)

- Paley, Wiener, Zygmund (1932): random functions.
- Bloch and Polya (1932):

$$u = a_0 + a_1 x + \dots + a_{n-1} x^{n-1} + x^n = 0,$$

 $a_k = 0, \pm 1$ with probability $\frac{1}{3}$. Mean number of real roots is $O(\sqrt{n})$.

• Littlewood, Offord (1938, 1939): other distributions and better estimates.

Brief history (polynomials)

• Mark Kac (1943): The first exact formula and asymptotically sharp estimate to the mean number of real roots for standard Gaussian coefficients a_j : it is asymptotic to $\frac{2}{\pi} \ln n$, has the upper bound $\ln n + \frac{14}{\pi}$, $n \ge 2$, and is subject to the formula

$$\mathsf{M}(N_u) = \frac{4}{\pi} \int_0^1 \frac{\sqrt{1 - \Phi_n(x)^2}}{1 - x^2} \, dx$$

where $\Phi(x) = (1 + n)x^n \frac{1 - x^2}{1 - x^{2n}}$.

 Ibragimov I.A., Maslova N.B.: other distributions, estimates of the variance.

(日) (伊) (日) (日) (日) (0) (0)

Brief history (polynomials)

In early 90th, Kostlan realized the geometric meaning of the computation of $M(N_u)$.

- Let γ(t) = (1, t, t²,..., tⁿ) be the moment curve and *a* = (a₀,..., a_{n-1}, a_n) be a vector in ℝⁿ⁺¹. The points in γ ∩ a[⊥] are in one-to-one correspondence with the zeroes of the polynomial with the coefficients a.
- The same is true for the curve $\tilde{\gamma}(t) = \frac{\gamma(t)}{|\gamma(t)|}$ in the unit sphere S^n .
- Integrating over Sⁿ on a, we get the expectation of zeroes. Due to a Crofton type formula (next page), it is proportional to the length of γ̃.

The arguments above can be extended onto the multidimensional case and other distributions.

A kinematic formula

The following formula is a particular case of Theorem 3.2.48 in Federer's book on Geometric Measure Theory. Let $A, B \subseteq S^d$ be compact, A be k-rectifiable, and B be l-rectifiable ("k-rectifiable" means "Lipschitz image of a bounded subset of \mathbb{R}^{k} "). Set r = k + l - d. Suppose $r \ge 0$. Then

ション ふゆ く 山 マ チャット しょうくしゃ

$$\int_{O(d+1)} \mathfrak{h}^{r}(A \cap gB) \, dg = \frac{\varpi^{r}}{\varpi_{k} \varpi_{l}} \mathfrak{h}^{k}(A) \mathfrak{h}^{l}(B),$$

where $\varpi_{k} = \frac{2\pi^{\frac{k+1}{2}}}{\Gamma(\frac{k+1}{2})}$ is the volume of S^{k} .

The Kostlan-Shub-Smale model

Let $\mathcal{P}_{n,m}$ be the space of homogeneous polynomials of degree *n* on \mathbb{R}^{m+1} and let the inner product in it be defined by the condition of orthogonality of monomials x^{α} and the equality

 $|x^{\alpha}|^2 = \alpha!,$

where $x \in \mathbb{R}^{m+1}$, $\alpha \in \mathbb{Z}_{+}^{n}$. Let u_k be a random polynomial in \mathcal{P}_n which is subject to the distribution with the density $\pi^{-\frac{d}{2}}e^{-|u|^2}$ in \mathcal{P}_n , and $d = \dim \mathcal{P}_n = \binom{n+m}{m}$. Kostlan found the expectation of the number of roots for the system $u_k = 0$, where $k = 1, \ldots, m$ (the roots are counted in the projective space). It is equal to $n^{\frac{m}{2}}$. In 90th, Smale and Shub extended Kostlan's result onto the case of system $u_k = 0$ of different degrees n_1, \ldots, n_m . The answer is $\sqrt{n_1 \ldots n_m}$.

Expectation of the Euler characteristic

• Podkorytov S.S. (1999). Let u be a Gaussian random polynomial of degree n on \mathbb{R}^{m+1} . Set

 $r = M\left(\frac{\partial u}{\partial x_m}(o)^2\right) / M(u(o)^2)$, where $o = (1, 0, \dots, 0)$,

$$I_m(t) = \int_0^t (1-x^2)^{\frac{m-1}{2}} dx, \quad \mu_m(r) = \frac{I_m(\sqrt{r})}{I_m(1)}.$$

Then

 $\mathsf{M}\left(\chi(N_u)\right)=\mu_n(r),$

where $N_u = u^{-1}(0)$ and *m* is odd. Moreover,

$$\frac{1 - (-1)^m}{2} \le r \le \frac{n(n + m - 1)}{m}$$

ション ふゆ く 山 マ チャット しょうくしゃ

Further results

In 2007, Bürgisser extended Podkorytov's theorem onto the case of higher codimension. Let n - k be even, $f = (f_1, \ldots, f_k)$ be Gaussian random polynomials, $r = (r_1, \ldots, r_k)$ be their Podkorytov's parameters. The expectation of $\chi(N_f)$ depends only on r and dimensions. He derived a formula for the expectation. His proof involves Weyl's Tube Formula. Wschebor (2005) found an upper bound for the variance of the

(日) (伊) (日) (日) (日) (0) (0)

number of roots.

Random polynomials

In what follows,

- G is a compact Lie group,
- *M* is a connected homogeneous space of *G*,
- *o* is the base point of *M* and *H* is its stable subgroup.

We say that a function u on M is a polynomial if the linear span of its translates $u \circ g$, $g \in G$, is finite dimensional.

E is a finite dimensional *G*-invariant subspace of continuous functions equipped with a *G*-invariant inner product (,),

ション ふゆ く 山 マ チャット しょうくしゃ

- ${\mathcal S}$ is the unit sphere in ${\mathcal E}$,
- $m = \dim M$,
- $d = \dim \mathcal{S} = \dim \mathcal{E} 1$.

Hausdorff measures

The *Hausdorff measure* \mathfrak{h}^s of dimension s is defined in two steps: 1) Let $\delta > 0$ and

$$\mathfrak{h}^{s}_{\delta}(E) = \frac{\pi^{\frac{s}{2}}}{\Gamma\left(\frac{s+1}{2}\right)} \inf \left\{ \sum \left(\frac{\operatorname{diam} C}{2}\right)^{s} : E \subseteq \bigcup C, \operatorname{diam} C < \delta \right\};$$

ション ふゆ アメリア メリア しょうくの

2) set $\mathfrak{h}^{s}(E) = \sup_{\delta > 0} \mathfrak{h}^{s}_{\delta}(E)$.

The measure \mathfrak{h}^0 is the counting function (i.e., $\mathfrak{h}^0(E) = \operatorname{card}(E)$).

Isotropy irreducible homogeneous spaces

If H acts in $T_o M$ irreducibly, then M is called isotropy irreducible.

- Let N be a Riemannian G-manifold and ι : M → N be an equivariant nonconstant smooth map. Then ι is a local diffeomorphism and a finite covering.
- The invariant Riemannian metric in M is unique up to a scaling factor. Hence the restriction of the Riemannian metric in N onto ι(M) is proportional to that of M.

ション ふゆ く 山 マ チャット しょうくしゃ

Isotropy irreducible homogeneous spaces

- Let s be the coefficient of proportionality. If γ is a path in M of length I, then the path ι ∘ γ has length sI. It follows that ι is a local metric homothety and the same is true for the Hausdorff measure h^k, with the coefficient s^k.
- By definition,

$$s = rac{|d_p arphi(\mathbf{v})|_N}{|\mathbf{v}|_M}$$

(日) (伊) (日) (日) (日) (0) (0)

for any $p \in M$ and $v \in T_p M$.

The immersion $M \rightarrow S$

There is a natural equivariant mapping $\iota : M \to S$. Let $p \in M$ and $\phi_p \in \mathcal{E}$ be such that $u(p) = \langle \phi_p, u \rangle$ for all $u \in \mathcal{E}$. Set

$$\iota(\boldsymbol{p}) = \frac{\phi_{\boldsymbol{p}}}{|\phi_{\boldsymbol{p}}|}$$

Lemma

If || is the norm of $L^2(M)$, then $s = \frac{|d_o\iota(v)|_{\mathcal{E}}}{|v|_{\mathcal{T}_oM}} = \frac{1}{c}\sqrt{\frac{-\operatorname{Tr}\Delta}{m}}$, where Δ is the Laplace–Beltrami operator on M. If \mathcal{E} is an eigenspace of Δ , then

$$s = \sqrt{\frac{\lambda}{m}},$$

where λ is the eigenvalue of $-\Delta$ in \mathcal{E} .

Connection between coefficients for different norms Let $\mathcal{E} = \mathcal{E}_1 \oplus \cdots \oplus \mathcal{E}_l$, where \mathcal{E}_j are irreducible, | | be the $L^2(M)$ norm and $|\tilde{|}|$ be another *G*-invariant norm. Then for all $u, v \in \mathcal{E}$ we have

$$\widetilde{\langle u, v \rangle} = \tau_1^{-1} \langle u_1, v_1 \rangle + \dots + \tau_l^{-1} \langle u_l, v_l \rangle, \qquad (1)$$

where u_j , v_j are components of u, v in the decomposition.

Proposition

We have

$$\widetilde{c}^{2} = \widetilde{|\phi_{p}|}^{2} = \tau_{1}c_{1}^{2} + \dots + \tau_{l}c_{l}^{2},$$

$$c^{2} = |\phi_{p}|^{2} = c_{1}^{2} + \dots + c_{l}^{2},$$

$$\widetilde{s}^{2} = \nu_{1}s_{1}^{2} + \dots + \nu_{l}s_{l}^{2},$$

where
$$u_j = rac{ au_j c_j^2}{ar{c}^2}$$
 and $s_j^2 = rac{\lambda_j}{m}$, $j = 1, \dots, I$.

Computation of expectations

Lemma

Let $X \subseteq M$ be (r + 1)-rectifiable, where $r \leq m - 1$. Then

$$\int_{\mathcal{S}}\mathfrak{h}^{r}(N_{u}\cap X)\,du=\frac{\varpi_{r}}{\varpi_{r+1}}\mathfrak{s}\,\mathfrak{h}^{r+1}(X),$$

where du stands for the probability invariant measure on S.

Let every space $\mathcal{E}_1, \ldots, \mathcal{E}_k$ be as \mathcal{E} above, $\mathbf{u} = (u_1, \ldots, u_k)$, and $N_{\mathbf{u}} = N_{u_1} \cap \ldots \cap N_{u_k}$, $k \leq m$. Averaging over $\mathcal{S}_1 \times \cdots \times \mathcal{S}_k$, we get

$$\mathsf{M}\left(\mathfrak{h}^{m-k}\left(N_{\mathbf{u}}\right)\right)=\varpi\frac{\varpi_{m-k}}{\varpi_{m}}s_{1}\ldots s_{k},$$

where $\varpi = Vol(M)$. For k = m we get the mean number of solutions to the system $u_i(p) = 0$, i = 1, ..., k.

Coefficients for the norm of $L^2(M)$

There is the well known decomposition

$$\mathcal{P}_n = \sum_{\substack{\mathbf{0} \leq j \leq n, \\ n-j \text{ even}}} |\mathbf{x}|^{n-j} \mathcal{H}_j,$$

where H_j is the space of harmonic homogeneous polynomials of degree j restricted to S^m . For the norm of $L^2(M)$ we have

$$c^{2} = \dim \mathcal{P}_{n} = \sum_{\substack{0 \le j \le n, \\ n-j \text{ even}}} c_{j}^{2} = \binom{m+n}{m}$$

$$c_{j}^{2} = \dim \mathcal{H}_{j} = \frac{(m+j-2)!(m+2j-1)}{(m-1)!j!},$$

$$s_{j}^{2} = \frac{j(m+j-1)}{m},$$

$$s^{2} = \frac{1}{c^{2}} \sum_{n-j \text{ even} \atop n-j \text{ even}} c_{j}^{2}s_{j}^{2} = \frac{n(m+n+1)}{m+2}.$$

Coefficients for the Kostlan–Shub–Smale model The coefficients are subject to the formulas

$$\tau_j^{-1} = \frac{2^n}{\Gamma\left(\frac{m-1}{2}\right)} \Gamma\left(\frac{n-j+2}{2}\right) \Gamma\left(\frac{m+n+j+1}{2}\right),$$
$$\tilde{c}^2 = \frac{1}{n!}, \ \tilde{s}^2 = n. \ \text{Thus} \ \nu_j = n! \tau_j c_j^2. \ \text{Set}$$
$$\mu_n = \sqrt{(m-1)n}.$$

Theorem

The coefficients ν_j extends onto \mathbb{C} as an entire function. On the interval (0, n) the function $\ln \nu(x)$ is strictly concave and has the unique critical point x_c which corresponds to the global maximum on (0, n). Moreover, if m is fixed and n is sufficiently large, then

$$\mu_n - \frac{m+1}{2} < x_c < \mu_n + 2.$$

Asymptotic behavior of u as $n \to \infty$

In what follows, we assume *m* fixed. Also, ν is extended from (0, n) onto \mathbb{R} by zero. Set $\overline{\nu}_n = \nu(x_c) = \max\{\nu(t) : t \in \mathbb{R}\}.$

Theorem

For any t > 0

$$\lim_{n\to\infty}\frac{\nu(\mu_n t)}{\bar{\nu}_n} = \left(t^2 e^{1-t^2}\right)^{\frac{m-1}{2}}$$

where the sequence on the left converges uniformly on $(0,\infty)$. Moreover,

$$\bar{\nu}_n = \frac{A_m}{\sqrt{n}}(1+o(1)),$$

where
$$A_m = rac{2\sqrt{2}}{\Gamma\left(rac{m}{2}
ight)} \left(rac{m-1}{2e}
ight)^{rac{m-1}{2}}$$

The rate of decreasing

The function $\left(t^2 e^{1-t^2}\right)^{\frac{m-1}{2}}$ gives an upper bound for ν :

$$\frac{\nu(t\mu_n+2)}{\nu(\mu_n)} < \left(t^2 e^{1-t^2}\right)^{\frac{m-1}{2}}$$

Thus the coefficients $\nu_j = n! \tilde{c}_j^2$ decrease very fast when j grows; however, for large $j \leq n$ the estimate above is not sharp and the rate of decay is greater. A short table below illustrates this. Let m = 10 and n = 900. Then $\mu_n = 90$, the maximum of ν_j (over all j between 0 and nsuch that n - j is even) is approximately 0.038 and is attained at j = 86. In the last row, b_j is the bound for ν_j defined by the inequality above (we multiply it on ν_{86} , replace t with $\frac{j}{\mu_n}$, and shift the index by 2).

Approximation by polynomials of degree less than n

For $u \in L^2(S^m)$, let $\delta(u, V)$ be the distance in $L^2(S^m)$ from u to V. Theorem

Let u be a random polynomial uniformly distributed in the unit sphere $\widetilde{S} \subseteq \mathcal{P}_n$ for the norm $|\widetilde{\ }|$. If $\kappa > 0$, then for all sufficiently large n and $l > (\kappa + 1)\mu_n$

$$\mathsf{M}(\delta(u,\mathcal{P}_l)^2) < \frac{5}{2\sqrt{m-1}} \frac{e^{-\kappa^2}}{\kappa} \mathsf{M}(|u|^2).$$