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• Brief history (polynomials and Laplace–Beltrami
eigenfunctions).

• Isotropy irreducible homogeneous spaces (expectations).
• The case of spheres (comparison of the Kostlan–Shub–Smale
and L2(Sm) models).

• Isotropy irreducible homogeneous spaces (variances).



Brief history (polynomials)

• Paley, Wiener, Zygmund (1932): random functions.
• Bloch and Polya (1932):

u = a0 + a1x + · · ·+ an−1x
n−1 + xn = 0,

ak = 0,±1 with probability 1
3 . Mean number of real roots is

O
(√

n
)
.

• Littlewood, Offord (1938, 1939): other distributions and
better estimates.



Brief history (polynomials)

• Mark Kac (1943): The first exact formula and asymptotically
sharp estimate to the mean number of real roots for standard
Gaussian coefficients aj : it is asymptotic to 2

π ln n, has the
upper bound ln n + 14

π , n ≥ 2, and is subject to the formula

M(Nu) =
4
π

∫ 1

0

√
1− Φn(x)2

1− x2 dx ,

where Φ(x) = (1 + n)xn 1−x2

1−x2n .
• Ibragimov I.A., Maslova N.B.: other distributions, estimates of
the variance.



Brief history (polynomials)

In early 90th, Kostlan realized the geometric meaning of the
computation of M(Nu).
• Let γ(t) = (1, t, t2, . . . , tn) be the moment curve and
a = (a0, . . . , an−1, an) be a vector in Rn+1. The points in
γ ∩ a⊥ are in one-to-one correspondence with the zeroes of the
polynomial with the coefficients a.

• The same is true for the curve γ̃(t) = γ(t)
|γ(t)| in the unit sphere

Sn.
• Integrating over Sn on a, we get the expectation of zeroes.
Due to a Crofton type formula (next page), it is proportional
to the length of γ̃.

The arguments above can be extended onto the multidimensional
case and other distributions.



A kinematic formula

The following formula is a particular case of Theorem 3.2.48 in
Federer’s book on Geometric Measure Theory. Let A,B ⊆ Sd be
compact, A be k-rectifiable, and B be l-rectifiable (“k-rectifiable”
means “Lipschitz image of a bounded subset of Rk ”). Set
r = k + l − d . Suppose r ≥ 0. Then

∫
O(d+1)

hr (A ∩ gB) dg =
$r

$k$l
hk(A)hl(B),

where $k = 2π
k+1
2

Γ( k+1
2 )

is the volume of Sk .



The Kostlan–Shub–Smale model

Let Pn,m be the space of homogeneous polynomials of degree n on
Rm+1 and let the inner product in it be defined by the condition of
orthogonality of monomials xα and the equality

|xα|2 = α!,

where x ∈ Rm+1, α ∈ Zn
+. Let uk be a random polynomial in Pn

which is subject to the distribution with the density π−
d
2 e−|u|

2
in

Pn, and d = dimPn =
(n+m

m

)
. Kostlan found the expectation of

the number of roots for the system uk = 0, where k = 1, . . . ,m
(the roots are counted in the projective space). It is equal to n

m
2 .

In 90th, Smale and Shub extended Kostlan’s result onto the case of
system uk = 0 of different degrees n1, . . . , nm. The answer is√
n1 . . . nm.



Expectation of the Euler characteristic

• Podkorytov S.S. (1999). Let u be a Gaussian random
polynomial of degree n on Rm+1. Set
r = M

(
∂u
∂xm

(o)2
)
/M(u(o)2), where o = (1, 0, . . . , 0),

Im(t) =

∫ t

0
(1− x2)

m−1
2 dx , µm(r) =

Im
(√

r
)

Im(1)
.

Then

M (χ(Nu)) = µn(r),

where Nu = u−1(0) and m is odd. Moreover,

1− (−1)m

2
≤ r ≤ n(n + m − 1)

m
.



Further results

In 2007, Bürgisser extended Podkorytov’s theorem onto the case of
higher codimension. Let n − k be even, f = (f1, . . . , fk) be
Gaussian random polynomials, r = (r1, . . . , rk) be their
Podkorytov’s parameters. The expectation of χ (Nf ) depends only
on r and dimensions. He derived a formula for the expectation. His
proof involves Weyl’s Tube Formula.
Wschebor (2005) found an upper bound for the variance of the
number of roots.



Random polynomials
Notation

In what follows,
• G is a compact Lie group,
• M is a connected homogeneous space of G ,
• o is the base point of M and H is its stable subgroup.

We say that a function u on M is a polynomial if the linear span of
its translates u ◦ g , g ∈ G , is finite dimensional.

• E is a finite dimensional G -invariant subspace of continuous
functions equipped with a G -invariant inner product 〈 , 〉,

• S is the unit sphere in E ,
• m = dimM,
• d = dimS = dim E − 1.



Hausdorff measures

The Hausdorff measure hs of dimension s is defined in two steps:
1) Let δ > 0 and

hsδ(E ) = π
s
2

Γ( s+1
2 )

inf
{∑(diamC

2

)s
: E ⊆

⋃
C , diamC < δ

}
;

2) set hs(E ) = sup
δ>0

hsδ(E ).

The measure h0 is the counting function (i.e., h0(E ) = card(E )).



Isotropy irreducible homogeneous spaces

If H acts in ToM irreducibly, then M is called isotropy irreducible.

• Let N be a Riemannian G -manifold and ι : M → N be an
equivariant nonconstant smooth map. Then ι is a local
diffeomorphism and a finite covering.

• The invariant Riemannian metric in M is unique up to a
scaling factor. Hence the restriction of the Riemannian metric
in N onto ι(M) is proportional to that of M.



Isotropy irreducible homogeneous spaces

• Let s be the coefficient of proportionality. If γ is a path in M
of length l , then the path ι ◦ γ has length sl . It follows that ι
is a local metric homothety and the same is true for the
Hausdorff measure hk , with the coefficient sk .

• By definition,

s =
|dpϕ(v)|N
|v |M

for any p ∈ M and v ∈ TpM.



The immersion M → S
There is a natural equivariant mapping ι : M → S. Let p ∈ M and
φp ∈ E be such that u(p) = 〈φp, u〉 for all u ∈ E . Set

ι(p) =
φp
|φp|

.

Lemma

If | | is the norm of L2(M), then s = |doι(v)|E
|v |ToM

= 1
c

√
−Tr ∆

m , where
∆ is the Laplace–Beltrami operator on M. If E is an eigenspace of
∆, then

s =

√
λ

m
,

where λ is the eigenvalue of −∆ in E .



Connection between coefficients for different norms
Let E = E1 ⊕ · · · ⊕ El , where Ej are irreducible, | | be the L2(M)

norm and |̃ | be another G -invariant norm. Then for all u, v ∈ E we
have

〈̃u, v〉 = τ−1
1 〈u1, v1〉+ · · ·+ τ−1

l 〈ul , vl〉 , (1)

where uj , vj are components of u, v in the decomposition.

Proposition
We have

c̃2 = |̃φ̃p|
2

= τ1c
2
1 + · · ·+ τlc

2
l ,

c2 = |φp|2 = c2
1 + · · ·+ c2

l ,

s̃2 = ν1s
2
1 + · · ·+ νls

2
l ,

where νj =
τjc

2
j

c̃2 and s2
j =

λj
m , j = 1, . . . , l .



Computation of expectations

Lemma
Let X ⊆ M be (r + 1)-rectifiable, where r ≤ m − 1. Then∫

S
hr (Nu ∩X ) du =

$r

$r+1
s hr+1(X ),

where du stands for the probability invariant measure on S.

Let every space E1, . . . , Ek be as E above, u = (u1, . . . , uk), and
Nu = Nu1 ∩ . . .∩Nuk , k ≤ m. Averaging over S1 × · · · × Sk , we
get

M
(
hm−k (Nu)

)
= $

$m−k
$m

s1 . . . sk ,

where $ = Vol(M). For k = m we get the mean number of
solutions to the system ui (p) = 0, i = 1, . . . , k .



Coefficients for the norm of L2(M)
There is the well known decomposition

Pn =
∑

0≤j≤n,
n−j even

|x |n−jHj ,

where Hj is the space of harmonic homogeneous polynomials of degree j
restricted to Sm. For the norm of L2(M) we have

c2 = dimPn =
∑

0≤j≤n,
n−j even

c2
j =

(
m + n

m

)

c2
j = dimHj =

(m + j − 2)!(m + 2j − 1)

(m − 1)!j!
,

s2
j =

j(m + j − 1)

m
,

s2 =
1
c2

∑
0≤j≤n,

n−j even

c2
j s

2
j =

n(m + n + 1)

m + 2
.



Coefficients for the Kostlan–Shub–Smale model
The coefficients are subject to the formulas

τ−1
j =

2n

Γ
(
m−1

2

)Γ

(
n − j + 2

2

)
Γ

(
m + n + j + 1

2

)
,

c̃2 = 1
n! , s̃

2 = n. Thus νj = n!τjc
2
j . Set

µn =
√

(m − 1)n.

Theorem
The coefficients νj extends onto C as an entire function. On the
interval (0, n) the function ln ν(x) is strictly concave and has the
unique critical point xc which corresponds to the global maximum
on (0, n). Moreover, if m is fixed and n is sufficiently large, then

µn −
m + 1

2
< xc < µn + 2.



Asymptotic behavior of ν as n→∞
In what follows, we assume m fixed. Also, ν is extended from (0, n)
onto R by zero. Set ν̄n = ν(xc) = max{ν(t) : t ∈ R}.

Theorem
For any t > 0

lim
n→∞

ν(µnt)

ν̄n
=
(
t2e1−t2

)m−1
2

where the sequence on the left converges uniformly on (0,∞).
Moreover,

ν̄n =
Am√
n

(1 + o(1)),

where Am = 2
√

2
Γ(m

2 )

(
m−1
2e

)m−1
2 .



The rate of decreasing

The function
(
t2e1−t2

)m−1
2

gives an upper bound for ν:

ν(tµn + 2)

ν(µn)
<
(
t2e1−t2

)m−1
2
.

Thus the coefficients νj = n! c̃2
j decrease very fast when j grows;

however, for large j ≤ n the estimate above is not sharp and the rate of
decay is greater. A short table below illustrates this. Let m = 10 and
n = 900. Then µn = 90, the maximum of νj (over all j between 0 and n
such that n − j is even) is approximately 0.038 and is attained at j = 86.
In the last row, bj is the bound for νj defined by the inequality above (we
multiply it on ν86, replace t with j

µn
, and shift the index by 2).

j 100 200 450 700 900

νj 0.032 6.0 · 10−7 2.9 · 10−45 9.0 · 10−127 6.1 · 10−259

bj 0.036 1.4 · 10−6 2.4 · 10−42 9.8 · 10−110 9.1 · 10−186



Approximation by polynomials of degree less than n

For u ∈ L2(Sm), let δ(u,V ) be the distance in L2(Sm) from u to V .

Theorem

Let u be a random polynomial uniformly distributed in the unit
sphere S̃ ⊆ Pn for the norm |̃ |. If κ > 0, then for all sufficiently
large n and l > (κ+ 1)µn

M(δ(u,Pl)2) <
5

2
√
m − 1

e−κ
2

κ
M(|u|2).


